Fertilizer and Lime Math

Hamilton County Green Express
March 2023

Robert Florence
SoilLab.Tennessee.edu
SOIL, PLANT \& PEST CENTER
Girextension
INSTITUTE OF AGRICULTURE
THE UNIVERSITY OF TENNESSEE

Fertilizers

SoilLab.Tennessee.edu/fertilizer-calculator

Lime

Fertilizer questions to ask yourself...

What is the lawn nutrient need?

What are the percent nutrients in your fertilizer?
When to apply the fertilizer?

Did you soil test?
Does the bag or bottle know your soil's exact need?

What is in the bag?

Label must be there by law

These are total amounts of nutrient

What is the nutrient need?

Nitrogen Timing

Tom Samples. 2010. Lawn Care: Selecting, Establishing \& maintaining the Fescues. UT Extension Publication 1576. Tom samples, et al,. 2007. Bermudagrass Athletic Field Management Calendar. UT Extension Publication 1632.

P and K Timing

Tom Samples. 2010. Lawn Care: Selecting, Establishing \& maintaining the Fescues. UT Extension Publication 1576. Tom samples, et al,. 2007. Bermudagrass Athletic Field Management Calendar. UT Extension Publication 1632.

If we know what fertilizer we have and
 what our plant or lawn needs are,

Then the rest is math.

Units can trip people up...

Recommendations are made in and fertilizers sold in $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$, and $\mathrm{K}_{2} \mathrm{O}$ equivalents.

Try not to say "units" without context
As in "I need 100 units of N"
You may only get 100 pounds of product...

Percent by weight of the nutrient equivalents

\(\left.\begin{array}{cc}GROW FAST \& 100 pounds has...

FERTILIZER \& 10 pounds of \mathrm{N} equivalent\end{array}\right\}\)| 10 pounds of $\mathrm{P}_{2} \mathrm{O}_{5}$ equivalent |
| :---: |
| $10-10-10$ | | 10 pounds of $\mathrm{K}_{2} \mathrm{O}$ equivalent |
| :--- |

Fertilizer formulas

To go from a recommendation to pounds of product to apply...
$\begin{gathered}\text { Pounds of nutrient } \\ \text { Per area }\end{gathered} \times \frac{100 \text { pounds product }}{\text { \# pounds of nutrient }}=\begin{gathered}\text { Pounds of product } \\ \text { Per area }\end{gathered}$

To go from pounds applied to how much nutrient was applied...

Pounds of product
applied per area
:---:
applied

Nitrogen only need

Lawn need is,
1 pound of N per $1,000 \mathrm{ft}^{2}$

We have, $34 \% \mathrm{~N} 0 \% \mathrm{P}_{2} \mathrm{O}_{5} 0 \% \mathrm{~K}_{2} \mathrm{O}$

1 pound N
Per $1,000 \mathrm{ft}^{2}$
:---:
Per $1,000 \mathrm{ft}^{2}$

Pretend our P and K are low...

Lawn need is,
1 pound of $\mathrm{N}, \mathrm{P} 2 \mathrm{O} 5$, and K2O per 1,000 ft ${ }^{2}$

And fertilizer we have is, $10 \% \mathrm{~N} \quad 10 \% \mathrm{P}_{2} \mathrm{O}_{5} \quad 10 \% \mathrm{~K}_{2} \mathrm{O}$

1 pound N
Per $1,000 \mathrm{ft}^{2}$
:---:
Per 1,000 ft^{2}

This also applies 1 pound of P2O5 and K20

Doing the math...

We applied 10 pounds of $10-10-10$

10 pounds product per 1,000 ft^{2}

$$
\times \frac{10 \text { pounds } \mathrm{P} 205}{100 \text { pounds of } 10-10-10}=\begin{gathered}
1 \text { pound } \mathrm{P}_{2} \mathrm{O}_{5} \\
\text { per } 1,000 \mathrm{ft}^{2}
\end{gathered}
$$

10 pounds product per 1,000 ft ${ }^{2}$

$$
x_{1} \frac{10 \text { pounds } \mathrm{K}_{2} 0}{100 \text { pounds of } 10-10-10}=
$$

1 pound $\mathrm{K}_{2} \mathrm{O}$ per $1,000 \mathrm{ft}^{2}$

Pretend our K is low, but P is fine...

Lawn need is,
1 pound of N , and 1 pound of $\mathrm{K}_{2} \mathrm{O}$ per 1,000 ft ${ }^{2}$

And fertilizers we have are: 10\% N
0\% N
$0 \% \mathrm{P}_{2} \mathrm{O}_{5}$
$0 \% \mathrm{P}_{2} \mathrm{O}_{5}$

0\% K $\mathrm{K}_{2} \mathrm{O}$
50\% K ${ }_{2} 0$

$\begin{gathered}1 \text { pound } \mathrm{K}_{2} \mathrm{O} \\ \text { Per } 1,000 \mathrm{ft}^{2}\end{gathered} \quad \times \quad \frac{100 \text { pounds } 0-0-50}{50 \text { pounds of } \mathrm{K}_{2} \mathrm{O}}=\begin{gathered}2 \text { Pounds of } 0-0-50 \\ \text { Per } 1,000 \mathrm{ft}^{2}\end{gathered}$

Which one is better?

Higher concentration fertilizer

Lower concentration fertilizer

What is the cost per pound of nutrient?

What is the release rate?
What is the plant's need?

Liquid fertilizers

Additional Liquid fertilizer question to ask yourself...

What is its density?

Liquid fertilizers

Now have to worry about converting gallons to pounds...

May be on front or back of bottle

26.2 pounds / 2.5 Gallons = 10.48 pounds per gallon

May have to look on Safety Data Sheet (SDS) for density

SECTION 9-PHYSICAL AND CHEMICAL PROPERTIES
Physical State: Liquid Odor and Appearance: No offensive odor. Dark brown to black color. Specific Gravity: 1.165 Vapor Density (air $=1$): N/A Evaporationrate: Boiling Point $\left({ }^{\circ} \mathrm{C}\right)>212^{\circ} \mathrm{F}$ $\mathrm{pH}:$ $5.5+/-0.5$ Coefficient of Water/Oil Distribution:

Specific gravity of 1 = density of water = 8.354 pounds per gallon

The liquid fertilizer formula

Recommendation Pounds nutrient per area	\times	From \% nutrient in the bottle 100 pounds product		
pounds nutrient			\quad	Pounds to apply
:---:				
Pounds product				
per area				

Liquid fertilizer, doing the math...
UAN

$$
32 \% \mathrm{~N} \quad 0 \% \mathrm{P}_{2} \mathrm{O}_{5} \quad 0 \% \mathrm{~K}_{2} \mathrm{O}
$$

$$
\begin{gathered}
\begin{array}{c}
\text { Recommendation } \\
1 \text { pound } \mathrm{N} \\
\text { Per 1,000 Sq. Ft. }
\end{array} \quad \times \frac{\begin{array}{c}
\text { \#nutrient per 100\# product } \\
100 \text { pounds product }
\end{array}}{32 \text { pounds } \mathrm{N}}
\end{gathered} \quad \begin{gathered}
\text { Pounds to apply } \\
3.13 \text { pounds product } \\
\text { Per 1,000 Sq. Ft. }
\end{gathered}
$$

Density

$x \frac{1 \text { gallon }}{11 \text { lbs. product }}=\begin{gathered}0.28 \text { Gallons product } \\ \text { Per } 1,000 \text { Sq. Ft. }\end{gathered}$

Pounds to apply
3.13 pounds

Per 1,000 Sq. Ft.

Checking a real life's bottle suggestion....

$$
10 \% N \quad 10 \% \mathrm{P}_{2} \mathrm{O}_{5} \quad 10 \% \mathrm{~K}_{2} 0
$$

Bottle suggestion
Suggests 0.17 gal per 1,000 sq. ft.
Pounds to apply

1.8 pounds
per 1,000 sq. ft.

Density

\#nutrient per 100\# product
10 lbs. N
100 lbs. product

Pounds product
1.8 pounds product per 1,000 sq. ft.

Answer
0.18 pounds N per 1,000 sq. ft.

$\$ 74.99$ for 2.5 gallons

Liquid fertilizers also good for...

Starter fertilizers

APP, UAN

Micro-nutrients

G. Higgins and S. Scheufele. September 2016. U Mass Extension

Boron rate = 0.02 pound per 1,000 ft ${ }^{2}$

High pH soils

R. Finneran and M. Wilson. March 2018. Michigan State University Extension

Iron and manganese

Fertilizer questions?

Lime

Lime questions to ask yourself...

What is the RNV basis on the recommendation?

What is the RNV of the limes avaible to you?
What is the cost to apply the right rate?

RNV = Relative Neutralizing Value

Lime, when do you need it

Soil pH				
4.5	5.5	6	6.5	7
	Blueberries	Blackberries, Strawberries, Acid loving shrubs	Lawn, Corn, Soybeans, Most vegetables	Sweet clover

How do you grade lime?

Purity

Fineness

How do you grade lime?

Purity - calcium carbonate equivalent (CCE)

Type	Composition	CCE if pure
Calcitic	Calcium carbonate	100
Dolomitic	Ca/Mg carbonate	109
slaked	Calcium hydroxide	135
Burnt or quick	Calcium oxide	179

How do you grade lime?

Fineness

Mesh	Inches	Efficiency factor
>10	$79 / 100$	0.33
10 to 40	$2 / 100$	0.73
40 to 60	$1 / 100$	0.93
<60	$<1 / 100$	1

How do you grade lime?

Kansas State Agronomy Dept.

$=$ Relative Neutralizing Value "RNV"

Lime math formula

Recommendation
$\begin{gathered}\text { Pounds of lime as X\% RNV } \\ \text { per area }\end{gathered} \times \frac{\text { \%RNV on recommendation }}{\% \text { RNV you will buy }}=$ Pounds to apply

Pounds of lime you buy per area

Pounds applied Pounds products RNV per area

Cost per pound
\$ Dollar per pound product

Cost to apply \$ Dollar per area

Do iterations of different products available to you to find the cost per area

Lime math formula

Recommendation
100 Pounds as 65\% RNV per 1,000 ft ${ }^{2}$

Converts RNV for you

Pretend you buy 80\%RNV lime
Pounds applied
81 pounds of 80% RNV per 1,000 ft ${ }^{2}$

Cost per pound
\$ 0.16 Dollar per pound product

Pounds to apply
81 pounds of 80% RNV per $1,000 \mathrm{ft}^{2}$

Cost to apply
\$12.96
per $1,000 \mathrm{ft}^{2}$

Do iterations of different products available to you to find the cost per area

Lime math formula

Recommendation
80 Pounds as 100% RNV per $1,000 \mathrm{ft}^{2}$

Converts RNV for you

Pretend you buy 75\%RNV lime
Pounds applied
107 pounds of 75% RNV per $1,000 \mathrm{ft}^{2}$

Cost per pound
\$ 0.10 Dollar per pound product

Pounds to apply 107 pounds of 75% RNV per $1,000 \mathrm{ft}^{2}$

Cost per pound	Cost to apply
$\$ 0.10$ Dollar	$\$ 10.70$
per pound product	per $1,000 \mathrm{ft}^{2}$

Do iterations of different products available to you to find the cost per area

What is better?

Calcitic

Dolomitic

Both start reacting with soil as water is available
Less soluble

Has magnesium

Price depends on how close you are to a source

What is better?

Ground lime

Pelletized "Pell" Lime

Check RNV

Check price

If pell is much more expensive than ground, Ask yourself, do you want to pay the convenience fee
(more even spread, less dust)

Liquid Lime

Liquid lime math formula

Recommendation
Pounds of lime as X\% RNV per area

Pounds to apply pounds products RNV per area

Converts RNV for you
$x \frac{\text { \%RNV on recommendation }}{\% \text { RNV you will buy }}=$

Pounds to apply pounds products RNV per area

Gallons to apply Gallons per area

Do iterations of different products available to you to find the cost per area

One real life on the shelf product

Has an RNV of 70
A density of 14.8 pounds per gallon
Costs $\$ 20$ per gallon
Suggests 5 gallons per acre

Liquid lime math formula

Recommendation
100 Pounds as 65\% RNV per 1,000 ft ${ }^{2}$

Pounds to apply
92 pounds per $1,000 \mathrm{ft}^{2}$

Product is 70% RNV

Density
$x \frac{1 \text { Gallon }}{14.8 \text { pounds }}=$

Pounds to apply
92 pounds per 1,000 ft ${ }^{2}$ Gallons to apply 6.2 Gallons per $1,000 \mathrm{ft}^{2}$
6.2 Gallons at $\$ 20$ per gallon is $\$ 124$ per 1,000 ft^{2}

Remember the bottle's suggestion was 5 gallons per acre but we really needed 6.2 Gallons per 1,000 ft²

1 acre inch of water is about 27,000 gallons $1,000 \mathrm{ft}^{2} \times 1$ inch of water is about 620 gallons

Liquid Lime math

Guaranteed Analysis

Liquid Lime math

Product details
Lime has been used for hundreds of years to "sweeten" or alkalize acidic soils. But nobody likes the drudgery of hauling heavy
bags to a spreader, then applying it in a cloud of dust. Say goodbye to all that. With your all you need to do
is spray it, just like all our other liquid products. Liming has never been easier! You can also use as a foliar spray
to supply calcium for lawns, gardens, farms, and pastures! Note: item may be labeled "Liquid Calcium" due to state labeling
laws.

Always ask, does the math add up?

Robert Florence
RobertF@utk.edu

Compost example

If we need
1 lbs . of N per $1,000 \mathrm{ft}^{2}$

And we have urban compost

$$
\sim 2-\underset{\text { uc Davis }}{\sim 0.25}-\sim 1.5
$$

$\begin{aligned} & 1 \text { pound } \mathrm{N} \\ & \text { Per } 1,000 \mathrm{ft}^{2}\end{aligned} \times \frac{100 \text { pounds compost }}{2 \text { pounds } \mathrm{N}}=\begin{gathered}50 \text { pounds dry compost } \\ \text { per } 1,000 \mathrm{ft}^{2}\end{gathered}$

If 10% of the N is available, then one would need 500 pounds

Compost is good for...

Organic matter

Infiltration

Aeration

Retaining nutrients

Alleviating compaction

