Fertilizer and Lime Math

Memphis Commercial Horticulture Expo November 2022

> Robert Florence SoilLab.Tennessee.edu

Fertilizers

SoilLab.Tennessee.edu/fertilizer-calculator

Lime

Fertilizer questions to ask yourself...

What is the lawn nutrient need?
What are the percent nutrients in your fertilizer?

Did you soil test?

Does the bag or bottle know your soil's exact need?

What is in the bag?

Label must be there by law

These are total amounts of nutrient

What is the nutrient need?

			Reco	mmendations		
Crop	Fertilizer			Lime		
	Nitrogen (as N)	Phosphate (as P2O5)	Potash (as K2O)	Rate		As 65% RNV
Lawn, Cool Season	2 to 4*	1	0	pounds per 1,000 square feet	180	pounds per 1000 square feet
Pleas	se read any	y text belov	v or on n	next sheet for additional sugge	estions	and resources

If we know what fertilizer we have and what our plant or lawn needs are,

Then the rest is math.

Units can trip people up...

Recommendations are made in and fertilizers sold in N, P_2O_5 , and K_2O equivalents.

Try not to say "units" without context
As in "I need 100 units of N"
You may only get 100 pounds of product...

Percent by weight of the nutrient equivalents

N P₂O₅ K₂O Nitrogen Phosphorus Potassium

> GROW FAST FERTILIZER

> > 10-10-10

100 POUNDS

100 pounds has...

10 pounds of N equivalent

10 pounds of P₂O₅ equivalent

10 pounds of K₂O equivalent

Fertilizer formulas

To go from a recommendation to pounds of product to apply...

Pounds of nutrient Per area
$$=$$
 100 pounds product $=$ Pounds of product Per area

To go from pounds applied to how much nutrient was applied...

Pounds of product applied per area
$$=$$
 $=$ $=$ $=$ Pounds of nutrient applied $=$ applied

Nitrogen only need

Lawn need is, 1 pound of N per 1,000 ft² We have, 34% N 0% P₂O₅ 0% K₂O

1 pound N
Per 1,000 ft²
$$x = \frac{100 \text{ pounds } 34\text{-}0\text{-}0}{34 \text{ pounds of N}} = \frac{3 \text{ Pounds of } 34\text{-}0\text{-}0}{\text{Per 1,000 ft}^2}$$

Pretend our P and K are low...

X

And fertilizer we have is,

$$10\% \text{ N}$$
 $10\% \text{ P}_2\text{O}_5$ $10\% \text{ K}_2\text{O}$

$$\frac{100 \text{ pounds } 10\text{-}10\text{-}10}{10 \text{ pounds of N}} = \frac{10 \text{ Pounds of } 10\text{-}10\text{-}10}{\text{Per 1,000 ft}^2}$$

This also applies 1 pound of P2O5 and K2O

Doing the math...

We applied 10 pounds of 10-10-10

1 pound K₂0

per 1,000 ft²

Pretend our K is low, but P is fine...

Lawn need is, 1 pound of N, and 1 pound of K₂O per 1,000 ft²

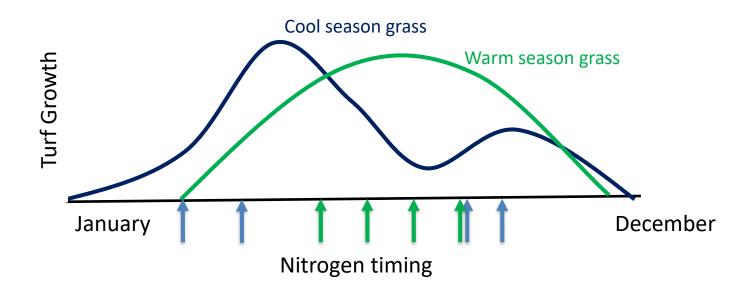
And fertilizers we have are: 10% N $0\% P_{2}O_{5}$ $0\% K_{2}0$

 $0\% P_{2}O_{5}$ 0% N 50% K₂0

Which one is better?

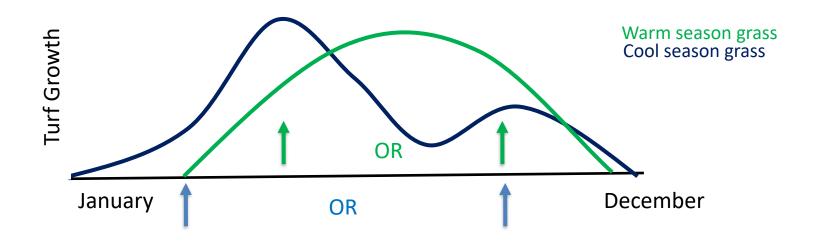
Higher concentration fertilizer

Lower concentration fertilizer


What is the cost per pound of nutrient?

What is the release rate?

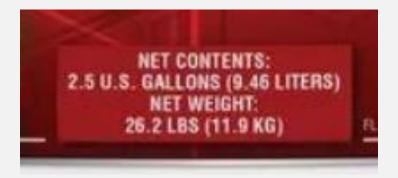
What is the plant's need?


Nitrogen Timing

Tom Samples. 2010. Lawn Care: Selecting, Establishing & maintaining the Fescues. UT Extension Publication 1576. Tom samples, *et al.*. 2007. Bermudagrass Athletic Field Management Calendar. UT Extension Publication 1632.

P and K Timing

Tom Samples. 2010. Lawn Care: Selecting, Establishing & maintaining the Fescues. UT Extension Publication 1576. Tom samples, *et al.*. 2007. Bermudagrass Athletic Field Management Calendar. UT Extension Publication 1632.


Liquid fertilizers

Liquid fertilizers

Now have to worry about converting gallons to pounds...

May be on front or back of bottle

26.2 pounds / 2.5 Gallons = 10.48 pounds per gallon

May have to look on Safety Data Sheet (SDS) for density

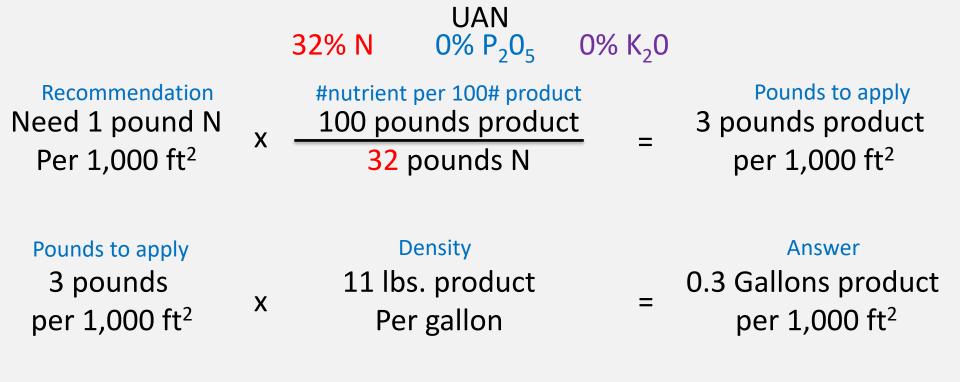
SECTION 9 – PHYSICAL AND CHEMICAL PROPERTIES			
Physical State:	Liquid	Odor and Appearance: No offensive odor. Dark brown to black color.	
Specific Gravity: 1.165		Vapor Density (air = 1): N/A	
EVaporation Kate:		Boiling Point (°C) > 212° F	
pH:	5.5 +/- 0.5	Coefficient of Water/Oil Distribution:	

Specific gravity of 1 = density of water = 8.354 pounds per gallon

The liquid fertilizer formula

Recommendation		From % nutrient in the bottle		Pounds to apply
Pounds nutrient	V	100 pounds product	=	Pounds product
per area	X	pounds nutrient	_	per area

pounds to apply pounds product per area


X

Density
Gallons
Per pound

G

Answer
Gallons to apply
Per area

Liquid fertilizer, doing the math...

Checking a real life's bottle suggestion....

 $7\% N 9\% P_2O_5$ $5\% K_20$ Pounds product **Bottle suggestion** Density Suggests 0.5 gallon 5.5 pounds product 11 pounds per acre per gallon per acre #nutrient per 100# product **Answer** Pounds to apply 7 lbs. N 0.39 pounds N 5.5 pounds X 100 lbs. product per *acre!* per acre Just under \$100 for 2.5 gallons

Liquid fertilizers also good for...

Starter fertilizers

APP, UAN

Micro-nutrients

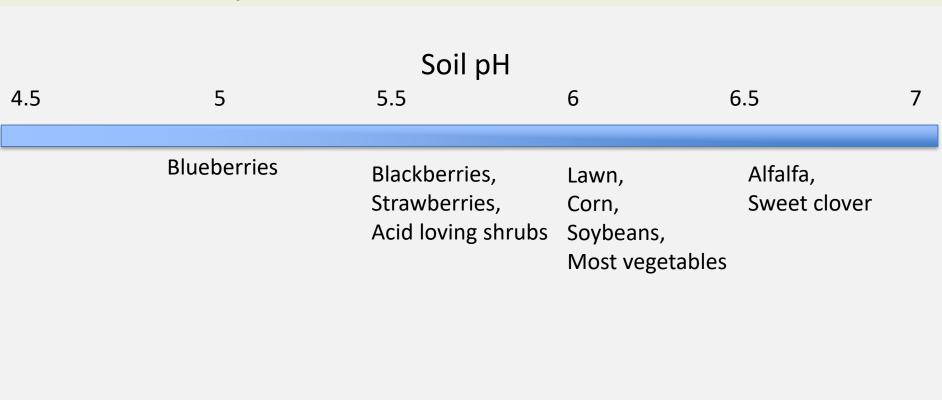
G. Higgins and S. Scheufele. September 2016. U Mass Extension.

Boron rate = 0.02 pound per 1,000 ft²

High pH soils

R. Finneran and M. Wilson. March 2018. Michigan State University Extension

Iron and manganese


Fertilizer questions?

Lime

Lime, when do you need it

Purity

Fineness

Purity – calcium carbonate equivalent (CCE)

Туре	Composition	CCE if pure
Calcitic	Calcium carbonate	100
Dolomitic	Ca/Mg carbonate	109
slaked	Calcium hydroxide	135
Burnt or quick	Calcium oxide	179

Fineness

Mesh	Inches	Efficiency factor
> 10	79/100	0.33
10 to 40	2/100	0.73
40 to 60	1/100	0.93
< 60	< 1/100	1

Kansas State Agronomy Dept.

Calcium Carbonate Equivalent (CCE). Effective Neutralizing Power (ENP)	.845lbs. per ton 90.0% 96.0% ECCE)91.9% 95.2% 90-99
CAS #1317-65-3	

Lime math formula

Recommendation

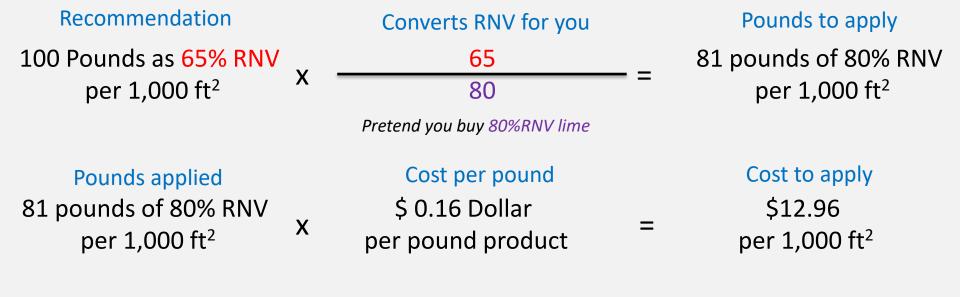
Converts RNV for you

$$\frac{\% RNV \text{ on recommendation}}{\% RNV \text{ you will buy}} =$$

Pounds to apply

Pounds of lime you buy per area

Pounds applied


X

Cost per pound

Cost to apply


\$ Dollar per area

Lime math formula

Lime math formula

What is better?

Real. Life. Solutions."

Calcitic

Dolomitic

Both start reacting with soil as water is available

Less soluble

Less so

Has magnesium

Price depends on how close you are to a source

What is better?

Ground lime

Pelletized "Pell" Lime

Check RNV

Check price

If pell is much more expensive than ground,
Ask yourself, do you want to pay the convenience fee

(more even spread, less dust)

Liquid Lime

Liquid lime math formula

Recommendation

Pounds of lime as X% RNV per area

Converts RNV for you

Pounds to apply

pounds products RNV per area

Pounds to apply

pounds products RNV per area

)

Density

Gallons per pound

Gallons to apply

Gallons per area

One real life on the shelf product

Has an RNV of 70

A density of 14.8 pounds per gallon

Costs \$20 per gallon

Suggests 5 gallons per acre

Liquid lime math formula

Recommendation

100 Pounds as 65% RNV per 1,000 ft²

Converts RNV for you

Pounds to apply

92 pounds per 1,000 ft²

Pounds to apply

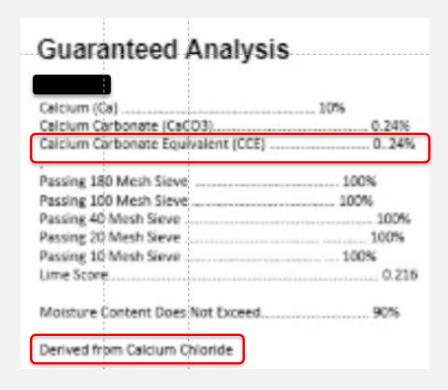
92 pounds per 1,000 ft²

Density

Gallons to apply

6.2 Gallons per 1,000 ft²

6.2 Gallons at \$20 per gallon is \$124 per 1,000 ft²


Remember the bottle's suggestion was 5 gallons per <u>acre</u> but we really needed 6.2 Gallons per <u>1,000 ft²</u>

1 acre inch of water is about 27,000 gallons 1,000 ft² x 1 inch of water is about 620 gallons

Liquid Lime math

Liquid Lime math

Lime has been used for hundreds of years to "sweeten" or alkalize acidic soils. But nobody likes the drudgery of hauling heavy bags to a spreader, then applying it in a cloud of dust. Say goodbye to all that. With your all you need to do is spray it, just like all our other liquid products. Liming has never been easier! You can also use as a foliar spray to supply calcium for lawns, gardens, farms, and pastures! Note: item may be labeled "Liquid Calcium" due to state labeling

| Size: gallon |

Always ask, does the math add up?

Robert Florence RobertF@utk.edu

Compost example

If we need 1 lbs. of N per 1,000 ft²

And we have urban compost ~2 - ~0.25 - ~1.5

$$\frac{1 \text{ pound N}}{\text{Per 1,000 ft}^2} \times \frac{100 \text{ pounds compost}}{2 \text{ pounds N}} = \frac{50 \text{ pounds dry compost}}{\text{per 1,000 ft}^2}$$

If 10% of the N is available, then one would need 500 pounds

Compost is good for...

Organic matter

Infiltration

Aeration

Retaining nutrients

Alleviating compaction

